Journal of Zhejiang University SCIENCE A

2006   Vol. 7   No. 6   p. 1018-1025

  ISSN 1009-3095(Print), 1862-1775(Online)
            [ Home Page ] | [ PDF Full Text ]   On-line Access Date:   May. 19, 2006

Efficient rendering of breaking waves using MPS method

WANG Qiang†1, ZHENG Yao1, CHEN Chun1, TADAHIRO Fujimoto2, CHIBA Norishige2

(1School of Computer Science, Zhejiang University, Hangzhou 310027, China)
(2Department of Computer Science, Faculty of Engineering, Iwate University, Morioka 020-08550, Japan)
Received Aug. 31, 2005 revision accepted Nov. 28, 2005

Abstract: This paper proposes an approach for rendering breaking waves out of large-scale of particle-based simulation. Moving particle semi-implicit (MPS) is used to solve the governing equation, and 2D simulation is expanded to 3D representation by giving motion variation using fractional Brownian motion (fBm). The waterbody surface is reconstructed from the outlines of 2D simulation. The splashing effect is computed according to the properties of the particles. Realistic features of the wave are rendered on GPU, including the reflective and refractive effect and the effect of splash. Experiments showed that the proposed method can simulate large scale breaking waves efficiently.

Key words: Moving particle semi-implicit (MPS), Particle-system, Surface reconstruction
doi:10.1631/jzus.2006.A1018             CLC number: TP391


[1] Christiansen, H.N., Sederberg, T.W., 1978. Conversion of complex contours line definition into polygonal element mosaics. Computer Graphics, 12(2):187-192.

[2] Ekoule, A.B., Peyrin, F.C., Odet, C.L., 1991. A triangulation algorithm from arbitrary shaped multiple planar contours. ACM Transactions on Graphics, 10(2):182-199.

[3] Enright, D., Marschner, S., Fedkiw, R., 2002. Animation and Rendering of Complex Water Surfaces. Proc. ACM SIGGRAPH 2002. San Antonio, Texas, USA, p.736-744.

[4] Foster, N., Fedkiw, R., 2001. Practical Animation of Liquids. Proc. ACM SIGGRAPH 2001. Los Angeles, California, USA, p.23-30.

[5] Fournier, A., Reeves, T., 1986. A simple model of ocean waves. ACM Transactions on Graphics, 20:75-84.

[6] Fujimoto, T., Miyauchi, S., Suzuki, T., Chiba, N., 2005. Noise-based Animation of Waving Phenomena. IWAIT2005. Jeju, Korea, p.459-464.

[7] Jeschke, S., Birkholz, H., Schmann, H., 2003. A Procedural Model for Interactive Animation of Breaking Ocean Waves. Proc. WSCG2003 POSTERS.

[8] Koshizuka, S., Tamako, H., Oka, Y., 1995. A particle method for incompressible viscous flow with fluid fragmentation. Comput. Fluid Dynamics, 4:29-46.

[9] Mandelbrot, B.B., 1977. The Fractal Geometry of Nature. W.H. Freeman, New York, p.127-135.

[10] Meyers, D., Skinner, S., 1992. Surfaces from contours. ACM Transactions on Graphics, 11(3):228-258.

[11] Mihalef, V., Metaxas, D., Sussman, M., 2004. Animation and Control of Breaking Waves. Proc. ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. Grenoble, France.

[12] Peachey, D.R., 1986. Modeling waves and surf. ACM Transactions on Graphics, 20:65-74.

[13] Premoze, S., Tasdizen, T., Bigler, J., Aaron L., Whitaker, R., 2003. Particle Based Simulation of Fluids. Proc. Eurographics 2003. Granada, Spain, p.401-410.

[14] Song, O.Y., Shin, H., Ko, H.S., 2005. Stable but nondissipative water. ACM Transaction on Graphics, 24(1):81-97.

[15] Stam, J., 1999. Stable Fluids. Proc. ACM SIGGRAPH’99, p.121-128.

[16] Stam, J., Fiume, E., 1995. Depicting Fire and Other Gaseous Phenomena Using Diffusion Processes. Proc. ACM SIGGRAPH’95, p.129-136.

[17] Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H., 2003. Realistic Animation of Fluid with Splash and Foam. Proc. Eurographics 2003. Granada, Spain, p.391-400.